VLSI- 2022-23

- An Efficient VLSI design of Median Filters using 8-bit Data Comparators in Image Applications
- 2. Low power low area VLSI implementation of adaptive FIR filter using DA for decision feedback equalizer
- 3. Novel VLSI Architecture for Fractional-Order Correntropy Adaptive Filtering Algorithm
- 4. VLSI Implementation of a Real-time Modified Decision-based Algorithm for Impulse Noise Removal
- 5. An Efficient Approximation Look Up Table Based Distributed Arithmetic (DA) VLSI Architecture for Finite Impulse Response
- 6. High-performance 3–2 Compressor Using Efficient XOR-XNOR in Nanotechnology
- 7. A Variant of Long Multiplication Design with Low Power and Area Using Modified 7: 3

 Compressor for Biomedical Applications
- 8. Energy-Efficient Approximate Compressor Design for Error-Resilient Digital Signal Processing
- 9. Low power Dadda multiplier using approximate almost full adder and Majority logic based adder compressors
- 10. Low-Power Low-Area Near-Lossless Image Compressor for Wireless Capsule Endoscopy
- 11. Energy-Efficient Approximate Compressor Design for Error-Resilient Digital Signal Processing
- 12. Entropy encoder for low-power low-resources high-quality CFA image compression
- 13. Error-Correction Coding Using Polynomial Residue Number System
- 14. TECED: A Two-Dimensional Error-Correction Codes Based Energy-Efficiency SRAM Design
- 15. Design and implementation of error detection and correction system for semiconductor memory applications
- 16. CapCAM: A Multilevel Capacitive Content Addressable Memory for High-Accuracy and High-Scalability Search and Compute Applications
- 17. Error Correction Scheme with Decimal Matrix Code for SRAM Emulation TCAMs
- 18. A Ternary Based Soft Error Resilient SRAM Content Addressable Memory with Improved security using checksum method

- 19. A new method for designing an efficient switching median filter using VLSI architecture to remove salt and pepper noise
- 20. MEGA-MAC: A Merged Accumulation based Approximate MAC Unit for Error Resilient Applications
- 21. Design of 16-Bit Vedic Multiplier Using Modified Logic Gates and BEC Technique
- 22. Mobile Networks-on-Chip Mapping Algorithms for Optimization of Latency and Energy Consumption
- 23. A Dynamic Hybrid Decoder Apprroach Using EG-LDPC Codes for Signal Processing Applications
- 24. A New VLSI Architecture for High-Performance Parallel Turbo Decoder
- 25. Successive Cancellation Polar Decoder Implementation using Processing Elements
- 26. Implementation of Low-Power BIST Using Bit Swapping Complete Feedback Shift Register (BSCFSR)
- 27. A Proposal for Design and Implementation of a Low Power Test Pattern Generator for BIST Applications
- 28. A contemporaneous input vector monitoring Bist architecture using memory
- 29. Design of efficient binary-coded decimal adder in QCA technology with a regular clocking scheme

VLSI-2021-22

1.	Design and analysis of High speed wallace tree multiplier using parallel
	prefix adders for VLSI circuit designs
2.	Implementation of optimized digital filter using sklansky adder and kogge
	stone adder
3.	Analysis of 8-bit Vedic Multiplier using high speed CLA Adder
4.	An Efficient Implementation of FIR Filter Using High Speed Adders For Signal
	Processing Applications
5.	Design of 8 bit and 16 bit Reversible ALU for Low Power Applications

6.	High speed and efficient ALU using modified booth multiplier
7.	Design of Area Optimized Arithmetic and Logical Unit for Microcontroller
8.	Modified High Speed 32-bit Vedic Multiplier Design and Implementation
9.	Application of Vedic Multiplier: Design of a FIR Filter
10.	Analysis of 32-Bit Multiply and Accumulate unit (MAC) using Vedic Multiplier
11.	Design and Evaluation of a FIR Filter Using Hybrid Adders and Vedic Multipliers
12.	High Performance, Low Power Architecture of 5-stage FIR Filter using Modified
	Montgomery Multiplier
13.	Controller Architecture for Memory BIST Algorithms
14.	Realization of Built-In Self-Test(BIST) Enabled Memory(RAM) Using Verilog and
	Implementation in Spartan6 FPGA board
15.	A High-Performance Symmetric Hybrid Form Design for High-Order FIR Filter
16.	FPGA Implementation of Symmetric Systolic FIR Filter using Multi-channel
	Technique
17.	Power efficient FIR filter Architecture using Distributed Arithmetic Algorithm
18.	Design of FIR filter based on FPGA
19.	Power efficient FIR filter Architecture using Distributed Arithmetic Algorithm
20.	Design and Analysis of LFSR based Random Number generator
21.	VLSI implementation of Turbo coder for Ite using Verilog
22.	A Self-Timed Ring based TRNG with Feedback Structure for FPGA Implementation
23.	Area Efficient and Low Power Multiplexer based Data Comparator for Median filter
	in Denoising Application
24.	Low Power SEC-DED Hamming Code Using Reversible Logic
	Irass: #503 Annanurna Rlock hasida mutriyanam Adhithya Enclava, Amaarnat HVD 38

25.	Design of Reversible Shift Registers Minimizing Number of Gates, Constant Inputs
	and Garbage Outputs
26.	Design and performance analysis of Subtractor using 2:1 multiplexer using multiple
	logic families
27.	Leakage Power Reduction in CMOS Logic Circuits Using Stack ONOFIC Technique adder
28.	Power Efficient Design of Adiabatic Approach for Low Power VLSI Circuits
29.	Review On LFSR For LOW Power BIST
30.	Designing of Multiplexer and De-Multiplexer using different Adiabatic Logic
31.	A Novel Area Efficient Parity Generator and Checker Circuits Design Using QCA
32.	Design of Multiplexer Using Actin Quantum Cellular Automata
33.	Design of a High-Performance 2-bit Magnitude Comparator Using Hybrid Logic
	Style
34.	Design and Implementation of Primitive Cells, Full Adder, Full Subtractor, and
	Multiplier using Modified Gate Diffusion Input Logic
35.	Realization of Power Efficient FIR Filters using Hybrid Accurate-Inaccurate Adder
	Architecture
36	Controller Architecture for Memory BIST Algorithms
37	Regeneration of Test Patterns for BIST by Using Artificial Neural Networks
38	Realization of Built-In Self Test(BIST) Enabled Memory(RAM) Using VHDL and Implementation in Spartan6 FPGA board
39	Test Scheduling for Low Transition Reusable LFSR based BIST in 3-D Stacked ICs
40	A Self-Timed Ring based TRNG with Feedback Structure for FPGA Implementation
41	Chaotic Ring Oscillator Based True Random Number Generator Implementations in FPGA
42	Chaotic True Random Number Generator for Secure Communication Applications
43	Design and Synthesis of LFSR based Random Number Generator
44	Design of LFSR Circuit based on High Performance XOR gate

45	A High-Performance Symmetric Hybrid Form Design for High-Order FIR Filters
46	FPGA Implementation of Symmetric Systolic FIR Filter using Multi-channel
	Technique
47	High Performance, Low Power Architecture of 5-stage FIR Filter using Modified
	Montgomery Multiplier
48	Power efficient FIR filter Architecture using Distributed Arithmetic Algorithm
49	Application of Vedic Multiplier: Design of a FIR Filter
50	Design of FIR filter based on FPGA
51	Realization of Power Efficient FIR Filters using Hybrid Accurate-Inaccurate Adder
	Architecture

2019 IEEE

Approximate Reverse Carry Propagate Adder for Energy-Efficient DSP Applications	Front End
Architecture Optimization and Performance Comparison of Nonce- Misuse-Resistant Authenticated Encryption Algorithms	Front End
TOSAM:AnEnergy-EfficientTruncation-andRounding- BasedScalableApproximate Multiplier	Front End
Design And Analysis Of Approximate Redundant Binary Multipliers.	Front end
Rounding Technique Analysis Of Power-Area & Energy Efficient Approximate Multiplier Design	Front end
A Combined Arithmetic-High-Level Synthesis Solution to Deploy Partial Carry-Save Radix-8 Booth Multipliers in Datapath.	Front end
Low Power High Accuracy Approximate Multiplier Using Approximate High Order Compressors.	Front end
Efficient Modular Adder Designs Based on Thermometer & One-Hot Encoding	Front End
Error Detection And Correction In SRAM Emulated TCAMs	Front end
Efficient Design For Fixed Width Adder Tree	Front end
Area –Time Efficient Streaming Architecture For Architecture For FAST And BRIEF Detector	Front end
	Applications Architecture Optimization and Performance Comparison of Nonce-Misuse-Resistant Authenticated Encryption Algorithms TOSAM:AnEnergy-EfficientTruncation-andRounding-BasedScalableApproximate Multiplier Design And Analysis Of Approximate Redundant Binary Multipliers. Rounding Technique Analysis Of Power-Area & Energy Efficient Approximate Multiplier Design A Combined Arithmetic-High-Level Synthesis Solution to Deploy Partial Carry-Save Radix-8 Booth Multipliers in Datapath. Low Power High Accuracy Approximate Multiplier Using Approximate High Order Compressors. Efficient Modular Adder Designs Based on Thermometer & One-Hot Encoding Error Detection And Correction In SRAM Emulated TCAMs Efficient Design For Fixed Width Adder Tree Area –Time Efficient Streaming Architecture For Architecture For FAST

14. Low power approximate unsigned multipliers with configurable error recovery 15. Energy Quality Scalable Adders Based On Non Zeroing Bit Truncation 16. Double MAC On A DSP Boosting The Performance Of Convolutional Neural Networks On FPGAS 17. A Low-Power Parallel Architecture for Linear Feedback Shift Registers 18. Ultra-low-voltage GDI-based hybrid full adder design for area and energy-efficient computing systems 19. Design Of Area Efficient And Low Power 4-Bit Multiplier Based On Full-swing GDI technique 20. Multistage Linear Feedback Shift Register Counters With Reduced Decoding Logic in 130-nm CMOS for Large-Scale Array Applications 21. Low-Power Near-Threshold 10T SRAM Bit Cells With Enhanced Data-Independent Read Port Leakage for Array Augmentation in 32-nm CMOS 22. Column selection enabled 10 T SRAM utilizing shared diff VDD WRITE and dropped VDD read for FFT on real data. 23. Cell-state-distribution—assisted threshold voltage detector for NAND flash memory 24. Efficient VLSI Implementation of a Sequential Finite Field Multiplier Using Reordered Normal Basis in Domino Logic 25. An Approach to LUT Based Multiplier for Short Word Length DSP Systems 26. Novel High speed Vedic Multiplier proposal incorporating Adder based on Quaternary Signed Digit number system 27. FPGA Implementation of an Improved Watchdog Timer for Safety-critical Applications 28. Unbiased Rounding for HUB Floating-point Addition 29. A Low-Power Yet High-Speed Configurable Adder for Approximate Computing 30. A Low-Power High-Speed Accuracy-Controllable Approximate Fronte Multiplier Design 31. The Design and Implementation of Multi—Precision Floating Point Arithmetic Unit Based on FPGA 32. Extending 3-bit Burst Error-Correction Codes With Quadruple Adjacent	12.	Hard Ware Efficient Post Processing Architecture For True Random Number Generators	Front end
15. Energy Quality Scalable Adders Based On Non Zeroing Bit Truncation 16. Double MAC On A DSP Boosting The Performance Of Convolutional Neural Networks On FPGAS 17. A Low-Power Parallel Architecture for Linear Feedback Shift Registers 18. Ultra-low-voltage GDI-based hybrid full adder design for area and energy-efficient computing systems 19. Design Of Area Efficient And Low Power 4-Bit Multiplier Based On Fullswing GDI technique 20. Multistage Linear Feedback Shift Register Counters With Reduced Decoding Logic in 130-nm CMOS for Large-Scale Array Applications 21. Low-Power Near-Threshold 10T SRAM Bit Cells With Enhanced Data-Independent Read Port Leakage for Array Augmentation in 32-nm CMOS 22. Column selection enabled 10 T SRAM utilizing shared diff VDD WRITE and dropped VDD read for FFT on real data. 23. Cell-state-distribution—assisted threshold voltage detector for NAND flash memory 24. Efficient VLSI Implementation of a Sequential Finite Field Multiplier Using Reordered Normal Basis in Domino Logic 25. An Approach to LUT Based Multiplier for Short Word Length DSP Systems 26. Novel High speed Vedic Multiplier proposal incorporating Adder based on Quaternary Signed Digit number system 27. FPGA Implementation of an Improved Watchdog Timer for Safety-critical Applications 28. Unbiased Rounding for HUB Floating-point Addition Fronte Computing 30. A Low-Power High-Speed Configurable Adder for Approximate Computing 31. The Design and Implementation of Multi—Precision Floating Point Arithmetic Unit Based on FPGA 32. Extending 3-bit Burst Error-Correction Codes With Quadruple Adjacent Fronte	13.	A Two Speed Radix -4 Serial –Parallel Multiplier	Front end
Energy Quality Scalable Adders Based On Non Zeroing Bit Truncation Front Double MAC On A DSP Boosting The Performance Of Convolutional Neural Networks On FPGAS 17. A Low-Power Parallel Architecture for Linear Feedback Shift Registers Front (18. Ultra-low-voltage GDI-based hybrid full adder design for area and energy-efficient computing systems 19. Design Of Area Efficient And Low Power 4-Bit Multiplier Based On Fullswing GDI technique 20. Multistage Linear Feedback Shift Register Counters With Reduced Decoding Logic in 130-nm CMOS for Large-Scale Array Applications 21. Low-Power Near-Threshold 10T SRAM Bit Cells With Enhanced Data-Independent Read Port Leakage for Array Augmentation in 32-nm CMOS 22. Column selection enabled 10 T SRAM utilizing shared diff VDD WRITE and dropped VDD read for FFT on real data. 23. Cell-state-distribution –assisted threshold voltage detector for NAND flash memory 24. Efficient VLSI Implementation of a Sequential Finite Field Multiplier Using Reordered Normal Basis in Domino Logic 25. An Approach to LUT Based Multiplier for Short Word Length DSP Systems 26. Novel High speed Vedic Multiplier proposal incorporating Adder based on Quaternary Signed Digit number system 27. FPGA Implementation of an Improved Watchdog Timer for Safety-critical Applications 28. Unbiased Rounding for HUB Floating-point Addition 29. A Low-Power Yet High-Speed Configurable Adder for Approximate Computing 30. A Low-Power High-Speed Accuracy-Controllable Approximate Multiplier Design 31. The Design and Implementation of Multi – Precision Floating Point Arithmetic Unit Based on FPGA 32. Extending 3-bit Burst Error-Correction Codes With Quadruple Adjacent Fronte	14.		Front end
Neural Networks On FPGAS 17. A Low-Power Parallel Architecture for Linear Feedback Shift Registers 18. Ultra-low-voltage GDI-based hybrid full adder design for area and energy-efficient computing systems 19. Design Of Area Efficient And Low Power 4-Bit Multiplier Based On Full-swing GDI technique 20. Multistage Linear Feedback Shift Register Counters With Reduced Decoding Logic in 130-nm CMOS for Large-Scale Array Applications 21. Low-Power Near-Threshold 10T SRAM Bit Cells With Enhanced Data-Independent Read Port Leakage for Array Augmentation in 32-nm CMOS 22. Column selection enabled 10 T SRAM utilizing shared diff VDD WRITE and dropped VDD read for FFT on real data. 23. Cell-state-distribution—assisted threshold voltage detector for NAND flash memory 24. Efficient VLSI Implementation of a Sequential Finite Field Multiplier Using Reordered Normal Basis in Domino Logic 25. An Approach to LUT Based Multiplier for Short Word Length DSP Systems 26. Novel High speed Vedic Multiplier proposal incorporating Adder based on Quaternary Signed Digit number system 27. FPGA Implementation of an Improved Watchdog Timer for Safety-critical Applications 28. Unbiased Rounding for HUB Floating-point Addition 29. A Low-Power Yet High-Speed Configurable Adder for Approximate Computing 30. A Low-Power High-Speed Accuracy-Controllable Approximate Multiplier Design 31. The Design and Implementation of Multi—Precision Floating Point Arithmetic Unit Based on FPGA 32. Extending 3-bit Burst Error-Correction Codes With Quadruple Adjacent	15.	Energy Quality Scalable Adders Based On Non Zeroing Bit Truncation	Front end
18. Ultra-low-voltage GDI-based hybrid full adder design for area and energy-efficient computing systems 19. Design Of Area Efficient And Low Power 4-Bit Multiplier Based On Full-swing GDI technique 20. Multistage Linear Feedback Shift Register Counters With Reduced Decoding Logic in 130-nm CMOS for Large-Scale Array Applications 21. Low-Power Near-Threshold 10T SRAM Bit Cells With Enhanced Data-Independent Read Port Leakage for Array Augmentation in 32-nm CMOS 22. Column selection enabled 10 T SRAM utilizing shared diff VDD WRITE and dropped VDD read for FFT on real data. 23. Cell-state-distribution—assisted threshold voltage detector for NAND flash memory 24. Efficient VLSI Implementation of a Sequential Finite Field Multiplier Using Reordered Normal Basis in Domino Logic 25. An Approach to LUT Based Multiplier for Short Word Length DSP Systems 26. Novel High speed Vedic Multiplier proposal incorporating Adder based on Quaternary Signed Digit number system 27. FPGA Implementation of an Improved Watchdog Timer for Safety-critical Applications 28. Unbiased Rounding for HUB Floating-point Addition 29. A Low-Power Yet High-Speed Configurable Adder for Approximate Computing 30. A Low-Power High-Speed Accuracy-Controllable Approximate Multiplier Design 31. The Design and Implementation of Multi—Precision Floating Point Arithmetic Unit Based on FPGA 32. Extending 3-bit Burst Error-Correction Codes With Quadruple Adjacent	16.		Front end
efficient computing systems 19. Design Of Area Efficient And Low Power 4-Bit Multiplier Based On Fullswing GDI technique 20. Multistage Linear Feedback Shift Register Counters With Reduced Decoding Logic in 130-nm CMOS for Large-Scale Array Applications 21. Low-Power Near-Threshold 10T SRAM Bit Cells With Enhanced Data-Independent Read Port Leakage for Array Augmentation in 32-nm CMOS 22. Column selection enabled 10 T SRAM utilizing shared diff VDD WRITE and dropped VDD read for FFT on real data. 23. Cell-state-distribution—assisted threshold voltage detector for NAND flash memory 24. Efficient VLSI Implementation of a Sequential Finite Field Multiplier Using Reordered Normal Basis in Domino Logic 25. An Approach to LUT Based Multiplier for Short Word Length DSP Systems 26. Novel High speed Vedic Multiplier proposal incorporating Adder based on Quaternary Signed Digit number system 27. FPGA Implementation of an Improved Watchdog Timer for Safety-critical Applications 28. Unbiased Rounding for HUB Floating-point Addition 29. A Low-Power Yet High-Speed Configurable Adder for Approximate Computing 30. A Low-Power High-Speed Accuracy-Controllable Approximate Multiplier Design 31. The Design and Implementation of Multi—Precision Floating Point Arithmetic Unit Based on FPGA 32. Extending 3-bit Burst Error-Correction Codes With Quadruple Adjacent	17.	A Low-Power Parallel Architecture for Linear Feedback Shift Registers	Front end
20. Multistage Linear Feedback Shift Register Counters With Reduced Decoding Logic in 130-nm CMOS for Large-Scale Array Applications 21. Low-Power Near-Threshold 10T SRAM Bit Cells With Enhanced Data-Independent Read Port Leakage for Array Augmentation in 32-nm CMOS 22. Column selection enabled 10 T SRAM utilizing shared diff VDD WRITE and dropped VDD read for FFT on real data. 23. Cell-state-distribution—assisted threshold voltage detector for NAND flash memory 24. Efficient VLSI Implementation of a Sequential Finite Field Multiplier Using Reordered Normal Basis in Domino Logic 25. An Approach to LUT Based Multiplier for Short Word Length DSP Systems 26. Novel High speed Vedic Multiplier proposal incorporating Adder based on Quaternary Signed Digit number system 27. FPGA Implementation of an Improved Watchdog Timer for Safety-critical Applications 28. Unbiased Rounding for HUB Floating-point Addition 29. A Low-Power Yet High-Speed Configurable Adder for Approximate Computing 30. A Low-Power High-Speed Accuracy-Controllable Approximate Multiplier Design 31. The Design and Implementation of Multi—Precision Floating Point Arithmetic Unit Based on FPGA 32. Extending 3-bit Burst Error-Correction Codes With Quadruple Adjacent	18.		BACK End
Decoding Logic in 130-nm CMOS for Large-Scale Array Applications Low-Power Near-Threshold 10T SRAM Bit Cells With Enhanced Data-Independent Read Port Leakage for Array Augmentation in 32-nm CMOS Column selection enabled 10 T SRAM utilizing shared diff VDD WRITE and dropped VDD read for FFT on real data. Cell-state-distribution—assisted threshold voltage detector for NAND flash memory BACK Efficient VLSI Implementation of a Sequential Finite Field Multiplier Using Reordered Normal Basis in Domino Logic An Approach to LUT Based Multiplier for Short Word Length DSP Systems Novel High speed Vedic Multiplier proposal incorporating Adder based on Quaternary Signed Digit number system PGA Implementation of an Improved Watchdog Timer for Safety-critical Applications Nough High-Speed Configurable Adder for Approximate Computing A Low-Power Yet High-Speed Configurable Adder for Approximate Fronte Multiplier Design A Low-Power High-Speed Accuracy-Controllable Approximate Multiplier Design The Design and Implementation of Multi—Precision Floating Point Arithmetic Unit Based on FPGA Extending 3-bit Burst Error-Correction Codes With Quadruple Adjacent Fronte	19.		BACK End
End of the Internation of States End of the End of	20.		BACK End
23. Cell-state-distribution –assisted threshold voltage detector for NAND flash memory 24. Efficient VLSI Implementation of a Sequential Finite Field Multiplier Using Reordered Normal Basis in Domino Logic 25. An Approach to LUT Based Multiplier for Short Word Length DSP Systems 26. Novel High speed Vedic Multiplier proposal incorporating Adder based on Quaternary Signed Digit number system 27. FPGA Implementation of an Improved Watchdog Timer for Safety-critical Applications 28. Unbiased Rounding for HUB Floating-point Addition 29. A Low-Power Yet High-Speed Configurable Adder for Approximate Computing 30. A Low-Power High-Speed Accuracy-Controllable Approximate Multiplier Design 31. The Design and Implementation of Multi – Precision Floating Point Arithmetic Unit Based on FPGA 32. Extending 3-bit Burst Error-Correction Codes With Quadruple Adjacent Frontations Efficient VLSI Implementation of Sequential Finite Field Multiplier BACK B	21.		BACK End
24. Efficient VLSI Implementation of a Sequential Finite Field Multiplier Using Reordered Normal Basis in Domino Logic 25. An Approach to LUT Based Multiplier for Short Word Length DSP Systems 26. Novel High speed Vedic Multiplier proposal incorporating Adder based on Quaternary Signed Digit number system 27. FPGA Implementation of an Improved Watchdog Timer for Safety-critical Applications 28. Unbiased Rounding for HUB Floating-point Addition 29. A Low-Power Yet High-Speed Configurable Adder for Approximate Computing 30. A Low-Power High-Speed Accuracy-Controllable Approximate Multiplier Design 31. The Design and Implementation of Multi – Precision Floating Point Arithmetic Unit Based on FPGA 32. Extending 3-bit Burst Error-Correction Codes With Quadruple Adjacent Fronted	22.		BACK End
Using Reordered Normal Basis in Domino Logic 25. An Approach to LUT Based Multiplier for Short Word Length DSP Systems 26. Novel High speed Vedic Multiplier proposal incorporating Adder based on Quaternary Signed Digit number system 27. FPGA Implementation of an Improved Watchdog Timer for Safety-critical Applications 28. Unbiased Rounding for HUB Floating-point Addition 29. A Low-Power Yet High-Speed Configurable Adder for Approximate Computing 30. A Low-Power High-Speed Accuracy-Controllable Approximate Multiplier Design 31. The Design and Implementation of Multi – Precision Floating Point Arithmetic Unit Based on FPGA 32. Extending 3-bit Burst Error-Correction Codes With Quadruple Adjacent Fronted	23.		BACK End
Systems 26. Novel High speed Vedic Multiplier proposal incorporating Adder based on Quaternary Signed Digit number system 27. FPGA Implementation of an Improved Watchdog Timer for Safety-critical Applications 28. Unbiased Rounding for HUB Floating-point Addition 29. A Low-Power Yet High-Speed Configurable Adder for Approximate Computing 30. A Low-Power High-Speed Accuracy-Controllable Approximate Multiplier Design 31. The Design and Implementation of Multi – Precision Floating Point Arithmetic Unit Based on FPGA 32. Extending 3-bit Burst Error-Correction Codes With Quadruple Adjacent Fronter	24.		BACK End
Quaternary Signed Digit number system 27. FPGA Implementation of an Improved Watchdog Timer for Safety-critical Applications 28. Unbiased Rounding for HUB Floating-point Addition 29. A Low-Power Yet High-Speed Configurable Adder for Approximate Computing 30. A Low-Power High-Speed Accuracy-Controllable Approximate Multiplier Design 31. The Design and Implementation of Multi – Precision Floating Point Arithmetic Unit Based on FPGA 32. Extending 3-bit Burst Error-Correction Codes With Quadruple Adjacent Fronteen	25.		Frontend
Applications 28. Unbiased Rounding for HUB Floating-point Addition Fronte 29. A Low-Power Yet High-Speed Configurable Adder for Approximate Computing 30. A Low-Power High-Speed Accuracy-Controllable Approximate Multiplier Design 31. The Design and Implementation of Multi – Precision Floating Point Arithmetic Unit Based on FPGA 32. Extending 3-bit Burst Error-Correction Codes With Quadruple Adjacent Fronte	26.		Frontend
29. A Low-Power Yet High-Speed Configurable Adder for Approximate Computing 30. A Low-Power High-Speed Accuracy-Controllable Approximate Multiplier Design 31. The Design and Implementation of Multi – Precision Floating Point Arithmetic Unit Based on FPGA 32. Extending 3-bit Burst Error-Correction Codes With Quadruple Adjacent Fronter	27.		Frontend
Computing 30. A Low-Power High-Speed Accuracy-Controllable Approximate Multiplier Design 31. The Design and Implementation of Multi – Precision Floating Point Arithmetic Unit Based on FPGA 32. Extending 3-bit Burst Error-Correction Codes With Quadruple Adjacent Fronter	28.	Unbiased Rounding for HUB Floating-point Addition	Frontend
Multiplier Design 31. The Design and Implementation of Multi – Precision Floating Point Arithmetic Unit Based on FPGA 32. Extending 3-bit Burst Error-Correction Codes With Quadruple Adjacent Fronter	29.		Frontend
Arithmetic Unit Based on FPGA 32. Extending 3-bit Burst Error-Correction Codes With Quadruple Adjacent Fronte	30.		Frontend
	31.		Frontend
Error Correction	32.	Extending 3-bit Burst Error-Correction Codes With Quadruple Adjacent Error Correction	Frontend

33.	Efficient Modular Adders based on Reversible Circuits	Frontend
34.	MAES: Modified Advanced Encryption Standard for Resource Constraint Environments	Frontend
35.	Chip Design for Turbo Encoder Module for In-Vehicle System	Frontend
36.	Low-Power and Fast Full Adder by Exploring New XOR and XNOR Gates	Backend

2018 IEEE

1.	First experimental demonstration of a scalable linear majority gate based on spin waves
2.	Design of Majority Logic Based Comparator
3.	Novel Cascadable Magnetic Majority Gates for Implementing Comprehensive Logic Functions
4.	Comparator Design using CTL and Outputwired based Majority Gate
5.	Design of Generalized Pipeline Cellular Array in Quantum-Dot Cellular Automata
6.	Size Optimization of MIGs with an Application to QCA and STMG Technologies
7.	Spin-based majority gates for logic applications
8.	Finite Hyperplane Codes: Minimum Distance and Majority-Logic Decoding
9.	Adapting Computer Arithmetic Structures to Sustainable Supercomputing in Low-Power, Majority-Logic Nanotechnologies
10.	A Novel Design of Quantum-Dots Cellular Automata Comparator Using Five- Input Majority Gate
11.	Modified majority logic decoding of Reed–Muller codes using factor graphs
12.	Characteristics of signal propagation in multiferroic majority logic gates subjected to thermal noise
13.	Bit error probability analysis for majority logic decoding of CSOC codes over fading channels
14.	Majority Voting-Based Reduced Precision Redundancy Adders
15.	On the Decoding Radius Realized by Low-Complexity Decoded Non-Binary Irregular LDPC Codes
16.	Design of 2's Complement of 4-Bit Binary Numbers Using Quantum Dot Cellular Automata
17.	Majority Logic: Prime Implicants and n-Input Majority Term Equivalence
18.	A Simple Synthesis Process for Combinational QCA Circuits: QSynthesizer
19.	Test Pattern Generator for Majority Voter based QCA Combinational Circuits targeting MMC Defect
20.	Two Bit Overlap: A Class of Double Error Correction One Step Majority Logic Decodable Codes
21.	A Majority-Based Imprecise Multiplier for Ultra-Efficient Approximate Image Multiplication

Design and Analysis of Majority Logic Based Approximate Adders and Multipliers 23. A CMOS Majority Logic Gate and Its Application to One-Step ML Decodable Codes 24. Novel Reliable QCA Subtractor Designs using Clock zone based Crossover 25. Inversions Optimization in XOR-Majority Graphs with an Application to QCA 26. Exact Synthesis of Boolean Functions in Majority-of-Five Forms 27. New Majority Gate-Based Parallel BCD Adder Designs for Quantum-Dot Cellular Automata 28. A Novel Iterative Reliability-Based Majority-Logic Decoder for NB-LDPC Codes 29. Design and Simulation of 4-bit QCA BCD Full-adder 30. An Effective Design of 4 - to - 2 Encoder and Priority Encoder Based on 3-dot QCA Architecture 31. An Effective Design of 2 : 1 Multiplexer and 1 : 2 Demultiplexer using 3-dot QCA Architecture 32. High Speed Memory Cell with Data Integrity in QCA 33. Design of an Efficient Multilayer Arithmetic Logic Unit in Quantum-Dot Cellular Automata (QCA) 34. Comparative Analysis of Full Adder Custom Design Circuit using Two Regular Structures in Quantum-Dot Cellular Automata (QCA) multiply accumulate (MAC) unit with power dissipation analysis 36. QCA Realization of Reversible Gates Using Layered T Logic Reduction Technique 37. QCA Based Error Detection Circuit for Nano Communication Network 38. Hamming Code Generators using LTEx Module of Quantum-dot Cellular Automata 39. A Design and Implementation of Montgomery Modular Multiplier 40. Modified Binary Multiplier Circuit Based on Vedic Mathematics 41. Performance Analysis of Wallace Tree Multiplier with Kogge Stone Adder using 15-4 Compressor 42. Implementation of Floating Point Unit based on Booth Multiplier and Compressor Adder 43. Digit-Serial Versatile Multiplier Based on a Novel Block Recombination of the Modified Overlap-Free Karatsuba Algorithm 44. Novel Bit-Paralle and Digit-Serial Systolic Finite Field Multipliers Over GF(2m) Based on Reordered Normal Basis 45. Low-Power Approximate Unsigned Multipliers with double LSB operands 46. Energy-effic		
23. A CMOS Majority Logic Gate and Its Application to One-Step ML Decodable Codes 24. Novel Reliable QCA Subtractor Designs using Clock zone based Crossover 25. Inversions Optimization in XOR-Majority Graphs with an Application to QCA 26. Exact Synthesis of Boolean Functions in Majority-of-Five Forms 27. New Majority Gate-Based Parallel BCD Adder Designs for Quantum-Dot Cellular Automata 28. A Novel Iterative Reliability-Based Majority-Logic Decoder for NB-LDPC Codes 29. Design and Simulation of 4-bit QCA BCD Full-adder 30. An Efficient Design of 4 - to - 2 Encoder and Priority Encoder Based on 3-dot QCA Architecture 31. An Effective Design of 2 : 1 Multiplexer and 1 : 2 Demultiplexer using 3-dot QCA Architecture 32. High Speed Memory Cell with Data Integrity in QCA 33. Design of an Efficient Multilayer Arithmetic Logic Unit in Quantum-Dot Cellular Automata (QCA) 34. Comparative Analysis of Full Adder Custom Design Circuit using Two Regular Structures in Quantum-Dot Cellular Automata (QCA) 35. Design of efficient quantum Dot cellular automata (QCA) multiply accumulate (MAC) unit with power dissipation analysis 36. QCA Realization of Reversible Gates Using Layered T Logic Reduction Technique 37. QCA Based Error Detection Circuit for Nano Communication Network 38. Hamming Code Generators using LTEx Module of Quantum-dot Cellular Automata 39. A Design and Implementation of Montgomery Modular Multiplier 40. Modified Binary Multiplier Circuit Based on Vedic Mathematics 41. Performance Analysis of Wallace Tree Multiplier with Kogge Stone Adder using 15-4 Compressor 42. Implementation of Floating Point Unit based on Booth Multiplier and Compressor Adder 43. Digit-Serial Versatile Multiplier Based on a Novel Block Recombination of the Modified Overlap-Free Karatsuba Algorithm 44. Novel Bit-Parallel and Digit-Serial Systolic Finite Field Multipliers Over GF(2m) Based on Reordered Normal Basis 45. Low-Power Approximate Unsigned Multipliers With Configurable Error Recovery 46. Energy-efficient VLSI	22.	
 Novel Reliable QCA Subtractor Designs using Clock zone based Crossover Inversions Optimization in XOR-Majority Graphs with an Application to QCA Exact Synthesis of Boolean Functions in Majority-of-Five Forms New Majority Gate-Based Parallel BCD Adder Designs for Quantum-Dot Cellular Automata A Novel Iterative Reliability-Based Majority-Logic Decoder for NB-LDPC Codes Design and Simulation of 4-bit QCA BCD Full-adder An Efficient Design of 4- to - 2 Encoder and Priority Encoder Based on 3-dot QCA Architecture An Effective Design of 2: 1 Multiplexer and 1: 2 Demultiplexer using 3-dot QCA Architecture High Speed Memory Cell with Data Integrity in QCA Design of an Efficient Multilayer Arithmetic Logic Unit in Quantum-Dot Cellular Automata (QCA) Comparative Analysis of Full Adder Custom Design Circuit using Two Regular Structures in Quantum-Dot Cellular Automata (QCA) Design of efficient quantum Dot cellular automata (QCA) multiply accumulate (MAC) unit with power dissipation analysis QCA Realization of Reversible Gates Using Layered T Logic Reduction Technique QCA Based Error Detection Circuit for Nano Communication Network Hamming Code Generators using LTEx Module of Quantum-dot Cellular Automata A Design and Implementation of Montgomery Modular Multiplier Modified Binary Multiplier Circuit Based on Vedic Mathematics Performance Analysis of Wallace Tree Multiplier with Kogge Stone Adder using 15-4 Compressor Implementation of Floating Point Unit based on Booth Multiplier and Compressor Adder Digit-Serial Versatile Multiplier Based on a Novel Block Recombination of the Modified Overlap-Free Karatsuba Algorithm Novel Bit-Parallel and Digit-Serial Systolic Finite Field Multipliers Over GF(2m) Based on Reordered Normal Basis Low-Power Ap	23.	A CMOS Majority Logic Gate and Its Application to One-Step ML Decodable
 Inversions Optimization in XOR-Majority Graphs with an Application to QCA Exact Synthesis of Boolean Functions in Majority-of-Five Forms New Majority Gate-Based Parallel BCD Adder Designs for Quantum-Dot Cellular Automata A Novel Iterative Reliability-Based Majority-Logic Decoder for NB-LDPC Codes Design and Simulation of 4-bit QCA BCD Full-adder An Efficient Design of 4 - to - 2 Encoder and Priority Encoder Based on 3-dot QCA Architecture An Effective Design of 2: 1 Multiplexer and 1: 2 Demultiplexer using 3-dot QCA Architecture High Speed Memory Cell with Data Integrity in QCA Design of an Efficient Multilayer Arithmetic Logic Unit in Quantum-Dot Cellular Automata (QCA) Comparative Analysis of Full Adder Custom Design Circuit using Two Regular Structures in Quantum-Dot Cellular Automata (QCA) Design of efficient quantum Dot cellular automata (QCA) multiply accumulate (MAC) unit with power dissipation analysis QCA Realization of Reversible Gates Using Layered T Logic Reduction Technique QCA Realization of Reversible Gates Using Layered T Logic Reduction Technique QCA Based Error Detection Circuit for Nano Communication Network Hamming Code Generators using LTEx Module of Quantum-dot Cellular Automata A Design and Implementation of Montgomery Modular Multiplier Modified Binary Multiplier Circuit Based on Vedic Mathematics Performance Analysis of Wallace Tree Multiplier with Kogge Stone Adder using 15-4 Compressor Implementation of Floating Point Unit based on Booth Multiplier and Compressor Adder Digit-Serial Versatile Multiplier Based on a Novel Block Recombination of the Modified Overlap-Free Karatsuba Algorithm Novel Bit-Parallel and Digit-Serial Systolic Finite Field Multipliers Over GF(2m) Based on Reordered Normal Basis Low-	24	
26. Exact Synthesis of Boolean Functions in Majority-of-Five Forms 27. New Majority Gate-Based Parallel BCD Adder Designs for Quantum-Dot Cellular Automata 28. A Novel Iterative Reliability-Based Majority-Logic Decoder for NB-LDPC Codes 29. Design and Simulation of 4-bit QCA BCD Full-adder 30. An Efficient Design of 4 - to - 2 Encoder and Priority Encoder Based on 3-dot QCA Architecture 31. An Effective Design of 2: 1 Multiplexer and 1: 2 Demultiplexer using 3-dot QCA Architecture 32. High Speed Memory Cell with Data Integrity in QCA 33. Design of an Efficient Multilayer Arithmetic Logic Unit in Quantum-Dot Cellular Automata (QCA) 34. Comparative Analysis of Full Adder Custom Design Circuit using Two Regular Structures in Quantum-Dot Cellular Automata (QCA) 35. Design of efficient quantum Dot cellular automata (QCA) multiply accumulate (MAC) unit with power dissipation analysis 36. QCA Realization of Reversible Gates Using Layered T Logic Reduction Technique 37. QCA Based Error Detection Circuit for Nano Communication Network 38. Hamming Code Generators using LTEx Module of Quantum-dot Cellular Automata 39. A Design and Implementation of Montgomery Modular Multiplier 40. Modified Binary Multiplier Circuit Based on Vedic Mathematics 41. Performance Analysis of Wallace Tree Multiplier with Kogge Stone Adder using 15-4 Compressor 42. Implementation of Floating Point Unit based on Booth Multiplier and Compressor Adder 43. Digit-Serial Versatile Multiplier Based on a Novel Block Recombination of the Modified Overlap-Free Karatsuba Algorithm 44. Novel Bit-Parallel and Digit-Serial Systolic Finite Field Multipliers Over GF(2m) Based on Reordered Normal Basis 45. Low-Power Approximate Unsigned Multipliers with double LSB operands 46. Energy-efficient VLSI implementation of multipliers with double LSB operands 47. Design and Analysis of Approximate Redundant Binary Multipliers 48. Low-Power High-Accuracy Approximate Multiplier Using Approximate High-Order Compressors 49. TOSAM: An Energy-Efficient		
27. New Majority Gate-Based Parallel BCD Adder Designs for Quantum-Dot Cellular Automata 28. A Novel Iterative Reliability-Based Majority-Logic Decoder for NB-LDPC Codes 29. Design and Simulation of 4-bit QCA BCD Full-adder 30. An Efficient Design of 4 - to - 2 Encoder and Priority Encoder Based on 3-dot QCA Architecture 31. An Effective Design of 2: 1 Multiplexer and 1: 2 Demultiplexer using 3-dot QCA Architecture 32. High Speed Memory Cell with Data Integrity in QCA 33. Design of an Efficient Multilayer Arithmetic Logic Unit in Quantum-Dot Cellular Automata (QCA) 34. Comparative Analysis of Full Adder Custom Design Circuit using Two Regular Structures in Quantum-Dot Cellular Automata (QCA) 35. Design of efficient quantum Dot cellular automata (QCA) multiply accumulate (MAC) unit with power dissipation analysis 36. QCA Realization of Reversible Gates Using Layered T Logic Reduction Technique 37. QCA Based Error Detection Circuit for Nano Communication Network 38. Hamming Code Generators using LTEx Module of Quantum-dot Cellular Automata 39. A Design and Implementation of Montgomery Modular Multiplier 40. Modified Binary Multiplier Circuit Based on Vedic Mathematics 41. Performance Analysis of Wallace Tree Multiplier with Kogge Stone Adder using 15-4 Compressor 42. Implementation of Floating Point Unit based on Booth Multiplier and Compressor Adder 43. Digit-Serial Versatile Multiplier Based on a Novel Block Recombination of the Modified Overlap-Free Karatsuba Algorithm 44. Novel Bit-Parallel and Digit-Serial Systolic Finite Field Multipliers Over GF(2m) Based on Reordered Normal Basis 45. Low-Power Approximate Unsigned Multipliers with double LSB operands 46. Energy-efficient VLSI implementation of multipliers with double LSB operands 47. Design and Analysis of Approximate Multiplier Using Approximate High-Order Compressors 48. Low-Power High-Accuracy Approximate Multiplier Using Approximate High-Order Compressors 49. TOSAM: An Energy-Efficient Truncation- and Rounding-Based Scalable Appr		
Cellular Automata 28. A Novel Iterative Reliability-Based Majority-Logic Decoder for NB-LDPC Codes 29. Design and Simulation of 4-bit QCA BCD Full-adder 30. An Efficient Design of 4 - to - 2 Encoder and Priority Encoder Based on 3-dot QCA Architecture 31. An Effective Design of 2: 1 Multiplexer and 1: 2 Demultiplexer using 3-dot QCA Architecture 32. High Speed Memory Cell with Data Integrity in QCA 33. Design of an Efficient Multilayer Arithmetic Logic Unit in Quantum-Dot Cellular Automata (QCA) 34. Comparative Analysis of Full Adder Custom Design Circuit using Two Regular Structures in Quantum-Dot Cellular Automata (QCA) 35. Design of efficient quantum Dot cellular automata (QCA) multiply accumulate (MAC) unit with power dissipation analysis 36. QCA Realization of Reversible Gates Using Layered T Logic Reduction Technique 37. QCA Based Error Detection Circuit for Nano Communication Network 38. Hamming Code Generators using LTEx Module of Quantum-dot Cellular Automata 39. A Design and Implementation of Montgomery Modular Multiplier 40. Modified Binary Multiplier Circuit Based on Vedic Mathematics 41. Performance Analysis of Wallace Tree Multiplier with Kogge Stone Adder using 15-4 Compressor 42. Implementation of Floating Point Unit based on Booth Multiplier and Compressor Adder 43. Digit-Serial Versatile Multiplier Based on a Novel Block Recombination of the Modified Overlap-Free Karatsuba Algorithm 44. Novel Bit-Parallel and Digit-Serial Systolic Finite Field Multipliers Over GF(2m) Based on Reordered Normal Basis 45. Low-Power Approximate Unsigned Multipliers with double LSB operands 46. Energy-efficient VLSI implementation of multipliers with double LSB operands 47. Design and Analysis of Approximate Redundant Binary Multipliers 48. Low-Power High-Accuracy Approximate Multiplier Using Approximate High-Order Compressors 49. TOSAM: An Energy-Efficient Truncation- and Rounding-Based Scalable Approximate Multiplier		
28. A Novel Iterative Reliability-Based Majority-Logic Decoder for NB-LDPC Codes 29. Design and Simulation of 4-bit QCA BCD Full-adder 30. An Efficient Design of 4 - to - 2 Encoder and Priority Encoder Based on 3-dot QCA Architecture 31. An Effective Design of 2: 1 Multiplexer and 1: 2 Demultiplexer using 3-dot QCA Architecture 32. High Speed Memory Cell with Data Integrity in QCA 33. Design of an Efficient Multilayer Arithmetic Logic Unit in Quantum-Dot Cellular Automata (QCA) 34. Comparative Analysis of Full Adder Custom Design Circuit using Two Regular Structures in Quantum-Dot Cellular Automata (QCA) 35. Design of efficient quantum Dot cellular automata (QCA) multiply accumulate (MAC) unit with power dissipation analysis 36. QCA Realization of Reversible Gates Using Layered T Logic Reduction Technique 37. QCA Based Error Detection Circuit for Nano Communication Network 38. Hamming Code Generators using LTEx Module of Quantum-dot Cellular Automata 39. A Design and Implementation of Montgomery Modular Multiplier 40. Modified Binary Multiplier Circuit Based on Vedic Mathematics 41. Performance Analysis of Wallace Tree Multiplier with Kogge Stone Adder using 15-4 Compressor 42. Implementation of Floating Point Unit based on Booth Multiplier and Compressor Adder 43. Digit-Serial Versatile Multiplier Based on a Novel Block Recombination of the Modified Overlap-Free Karatsuba Algorithm 44. Novel Bit-Parallel and Digit-Serial Systolic Finite Field Multipliers Over GF(2m) Basis 45. Low-Power Approximate Unsigned Multipliers With Configurable Error Recovery 46. Energy-efficient VLSI implementation of multipliers with double LSB operands 47. Design and Analysis of Approximate Redundant Binary Multipliers 48. Low-Power High-Accuracy Approximate Multiplier Using Approximate High-Order Compressors 49. TOSAM: An Energy-Efficient Truncation- and Rounding-Based Scalable Approximate Multiplier	27.	
Codes	28	
29. Design and Simulation of 4-bit QCA BCD Full-adder 30. An Efficient Design of 4 - to - 2 Encoder and Priority Encoder Based on 3-dot QCA Architecture 31. An Effective Design of 2: 1 Multiplexer and 1: 2 Demultiplexer using 3-dot QCA Architecture 32. High Speed Memory Cell with Data Integrity in QCA 33. Design of an Efficient Multilayer Arithmetic Logic Unit in Quantum-Dot Cellular Automata (QCA) 34. Comparative Analysis of Full Adder Custom Design Circuit using Two Regular Structures in Quantum-Dot Cellular Automata (QCA) 35. Design of efficient quantum Dot cellular automata (QCA) multiply accumulate (MAC) unit with power dissipation analysis 36. QCA Realization of Reversible Gates Using Layered T Logic Reduction Technique 37. QCA Based Error Detection Circuit for Nano Communication Network 38. Hamming Code Generators using LTEx Module of Quantum-dot Cellular Automata 39. A Design and Implementation of Montgomery Modular Multiplier 40. Modified Binary Multiplier Circuit Based on Vedic Mathematics 41. Performance Analysis of Wallace Tree Multiplier with Kogge Stone Adder using 15-4 Compressor 42. Implementation of Floating Point Unit based on Booth Multiplier and Compressor Adder 43. Digit-Serial Versatile Multiplier Based on a Novel Block Recombination of the Modified Overlap-Free Karatsuba Algorithm 44. Novel Bit-Parallel and Digit-Serial Systolic Finite Field Multipliers Over GF(2m) Based on Reordered Normal Basis 45. Low-Power Approximate Unsigned Multipliers with double LSB operands 47. Design and Analysis of Approximate Redundant Binary Multipliers 48. Low-Power High-Accuracy Approximate Multiplier Using Approximate High-Order Compressors 49. TOSAM: An Energy-Efficient Truncation- and Rounding-Based Scalable Approximate Multiplier		
30. An Efficient Design of 4 - to - 2 Encoder and Priority Encoder Based on 3-dot QCA Architecture 31. An Effective Design of 2 : 1 Multiplexer and 1 : 2 Demultiplexer using 3-dot QCA Architecture 32. High Speed Memory Cell with Data Integrity in QCA 33. Design of an Efficient Multilayer Arithmetic Logic Unit in Quantum-Dot Cellular Automata (QCA) 34. Comparative Analysis of Full Adder Custom Design Circuit using Two Regular Structures in Quantum-Dot Cellular Automata (QCA) 35. Design of efficient quantum Dot cellular automata (QCA) multiply accumulate (MAC) unit with power dissipation analysis 36. QCA Realization of Reversible Gates Using Layered T Logic Reduction Technique 37. QCA Based Error Detection Circuit for Nano Communication Network 38. Hamming Code Generators using LTEx Module of Quantum-dot Cellular Automata 39. A Design and Implementation of Montgomery Modular Multiplier 40. Modified Binary Multiplier Circuit Based on Vedic Mathematics 41. Performance Analysis of Wallace Tree Multiplier with Kogge Stone Adder using 15-4 Compressor 42. Implementation of Floating Point Unit based on Booth Multiplier and Compressor Adder 43. Digit-Serial Versatile Multiplier Based on a Novel Block Recombination of the Modified Overlap-Free Karatsuba Algorithm 44. Novel Bit-Parallel and Digit-Serial Systolic Finite Field Multipliers Over GF(2m) Based on Reordered Normal Basis 45. Low-Power Approximate Unsigned Multipliers with double LSB operands 46. Energy-efficient VLSI implementation of multipliers with double LSB operands 47. Design and Analysis of Approximate Redundant Binary Multipliers 48. Low-Power High-Accuracy Approximate Multiplier Using Approximate High-Order Compressors 49. TOSAM: An Energy-Efficient Truncation- and Rounding-Based Scalable Approximate Multiplier	29.	
31. An Effective Design of 2 : 1 Multiplexer and 1 : 2 Demultiplexer using 3-dot QCA Architecture 32. High Speed Memory Cell with Data Integrity in QCA 33. Design of an Efficient Multilayer Arithmetic Logic Unit in Quantum-Dot Cellular Automata (QCA) 34. Comparative Analysis of Full Adder Custom Design Circuit using Two Regular Structures in Quantum-Dot Cellular Automata (QCA) 35. Design of efficient quantum Dot cellular automata (QCA) multiply accumulate (MAC) unit with power dissipation analysis 36. QCA Realization of Reversible Gates Using Layered T Logic Reduction Technique 37. QCA Based Error Detection Circuit for Nano Communication Network 38. Hamming Code Generators using LTEx Module of Quantum-dot Cellular Automata 39. A Design and Implementation of Montgomery Modular Multiplier 40. Modified Binary Multiplier Circuit Based on Vedic Mathematics 41. Performance Analysis of Wallace Tree Multiplier with Kogge Stone Adder using 15-4 Compressor 42. Implementation of Floating Point Unit based on Booth Multiplier and Compressor Adder 43. Digit-Serial Versatile Multiplier Based on a Novel Block Recombination of the Modified Overlap-Free Karatsuba Algorithm 44. Novel Bit-Parallel and Digit-Serial Systolic Finite Field Multipliers Over GF(2m) Based on Reordered Normal Basis 45. Low-Power Approximate Unsigned Multipliers With Configurable Error Recovery 46. Energy-efficient VLSI implementation of multipliers with double LSB operands 47. Design and Analysis of Approximate Redundant Binary Multipliers 48. Low-Power High-Accuracy Approximate Multiplier Using Approximate High-Order Compressors 49. TOSAM: An Energy-Efficient Truncation- and Rounding-Based Scalable Approximate Multiplier		
31. An Effective Design of 2 : 1 Multiplexer and 1 : 2 Demultiplexer using 3-dot QCA Architecture 32. High Speed Memory Cell with Data Integrity in QCA 33. Design of an Efficient Multilayer Arithmetic Logic Unit in Quantum-Dot Cellular Automata (QCA) 34. Comparative Analysis of Full Adder Custom Design Circuit using Two Regular Structures in Quantum-Dot Cellular Automata (QCA) 35. Design of efficient quantum Dot cellular automata (QCA) multiply accumulate (MAC) unit with power dissipation analysis 36. QCA Realization of Reversible Gates Using Layered T Logic Reduction Technique 37. QCA Based Error Detection Circuit for Nano Communication Network 38. Hamming Code Generators using LTEx Module of Quantum-dot Cellular Automata 39. A Design and Implementation of Montgomery Modular Multiplier 40. Modified Binary Multiplier Circuit Based on Vedic Mathematics 41. Performance Analysis of Wallace Tree Multiplier with Kogge Stone Adder using 15-4 Compressor 42. Implementation of Floating Point Unit based on Booth Multiplier and Compressor Adder 43. Digit-Serial Versatile Multiplier Based on a Novel Block Recombination of the Modified Overlap-Free Karatsuba Algorithm 44. Novel Bit-Parallel and Digit-Serial Systolic Finite Field Multipliers Over GF(2m) Based on Reordered Normal Basis 45. Low-Power Approximate Unsigned Multipliers With Configurable Error Recovery 46. Energy-efficient VLSI implementation of multipliers with double LSB operands 47. Design and Analysis of Approximate Redundant Binary Multipliers 48. Low-Power High-Accuracy Approximate Multiplier Using Approximate High-Order Compressors 49. TOSAM: An Energy-Efficient Truncation- and Rounding-Based Scalable Approximate Multiplier		·
QCA Architecture	31.	•
33. Design of an Efficient Multilayer Arithmetic Logic Unit in Quantum-Dot Cellular Automata (QCA) 34. Comparative Analysis of Full Adder Custom Design Circuit using Two Regular Structures in Quantum-Dot Cellular Automata (QCA) 35. Design of efficient quantum Dot cellular automata (QCA) multiply accumulate (MAC) unit with power dissipation analysis 36. QCA Realization of Reversible Gates Using Layered T Logic Reduction Technique 37. QCA Based Error Detection Circuit for Nano Communication Network 48. Hamming Code Generators using LTEx Module of Quantum-dot Cellular Automata 39. A Design and Implementation of Montgomery Modular Multiplier 40. Modified Binary Multiplier Circuit Based on Vedic Mathematics 41. Performance Analysis of Wallace Tree Multiplier with Kogge Stone Adder using 15-4 Compressor 42. Implementation of Floating Point Unit based on Booth Multiplier and Compressor Adder 43. Digit-Serial Versatile Multiplier Based on a Novel Block Recombination of the Modified Overlap-Free Karatsuba Algorithm 44. Novel Bit-Parallel and Digit-Serial Systolic Finite Field Multipliers Over GF(2m) Based on Reordered Normal Basis 45. Low-Power Approximate Unsigned Multipliers With Configurable Error Recovery 46. Energy-efficient VLSI implementation of multipliers with double LSB operands 47. Design and Analysis of Approximate Redundant Binary Multipliers 48. Low-Power High-Accuracy Approximate Multiplier Using Approximate High-Order Compressors 49. TOSAM: An Energy-Efficient Truncation- and Rounding-Based Scalable Approximate Multiplier		
33. Design of an Efficient Multilayer Arithmetic Logic Unit in Quantum-Dot Cellular Automata (QCA) 34. Comparative Analysis of Full Adder Custom Design Circuit using Two Regular Structures in Quantum-Dot Cellular Automata (QCA) 35. Design of efficient quantum Dot cellular automata (QCA) multiply accumulate (MAC) unit with power dissipation analysis 36. QCA Realization of Reversible Gates Using Layered T Logic Reduction Technique 37. QCA Based Error Detection Circuit for Nano Communication Network 48. Hamming Code Generators using LTEx Module of Quantum-dot Cellular Automata 39. A Design and Implementation of Montgomery Modular Multiplier 40. Modified Binary Multiplier Circuit Based on Vedic Mathematics 41. Performance Analysis of Wallace Tree Multiplier with Kogge Stone Adder using 15-4 Compressor 42. Implementation of Floating Point Unit based on Booth Multiplier and Compressor Adder 43. Digit-Serial Versatile Multiplier Based on a Novel Block Recombination of the Modified Overlap-Free Karatsuba Algorithm 44. Novel Bit-Parallel and Digit-Serial Systolic Finite Field Multipliers Over GF(2m) Based on Reordered Normal Basis 45. Low-Power Approximate Unsigned Multipliers With Configurable Error Recovery 46. Energy-efficient VLSI implementation of multipliers with double LSB operands 47. Design and Analysis of Approximate Redundant Binary Multipliers 48. Low-Power High-Accuracy Approximate Multiplier Using Approximate High-Order Compressors 49. TOSAM: An Energy-Efficient Truncation- and Rounding-Based Scalable Approximate Multiplier	32.	High Speed Memory Cell with Data Integrity in QCA
Automata (QCA) 34. Comparative Analysis of Full Adder Custom Design Circuit using Two Regular Structures in Quantum-Dot Cellular Automata (QCA) 35. Design of efficient quantum Dot cellular automata (QCA) multiply accumulate (MAC) unit with power dissipation analysis 36. QCA Realization of Reversible Gates Using Layered T Logic Reduction Technique 37. QCA Based Error Detection Circuit for Nano Communication Network 38. Hamming Code Generators using LTEx Module of Quantum-dot Cellular Automata 39. A Design and Implementation of Montgomery Modular Multiplier 40. Modified Binary Multiplier Circuit Based on Vedic Mathematics 41. Performance Analysis of Wallace Tree Multiplier with Kogge Stone Adder using 15-4 Compressor 42. Implementation of Floating Point Unit based on Booth Multiplier and Compressor Adder 43. Digit-Serial Versatile Multiplier Based on a Novel Block Recombination of the Modified Overlap-Free Karatsuba Algorithm 44. Novel Bit-Parallel and Digit-Serial Systolic Finite Field Multipliers Over GF(2m) Based on Reordered Normal Basis 45. Low-Power Approximate Unsigned Multipliers With Configurable Error Recovery 46. Energy-efficient VLSI implementation of multipliers with double LSB operands 47. Design and Analysis of Approximate Redundant Binary Multipliers 48. Low-Power High-Accuracy Approximate Multiplier Using Approximate High-Order Compressors 49. TOSAM: An Energy-Efficient Truncation- and Rounding-Based Scalable Approximate Multiplier	33.	
Structures in Quantum-Dot Cellular Automata (QCA) 35. Design of efficient quantum Dot cellular automata (QCA) multiply accumulate (MAC) unit with power dissipation analysis 36. QCA Realization of Reversible Gates Using Layered T Logic Reduction Technique 37. QCA Based Error Detection Circuit for Nano Communication Network 38. Hamming Code Generators using LTEx Module of Quantum-dot Cellular Automata 39. A Design and Implementation of Montgomery Modular Multiplier 40. Modified Binary Multiplier Circuit Based on Vedic Mathematics 41. Performance Analysis of Wallace Tree Multiplier with Kogge Stone Adder using 15-4 Compressor 42. Implementation of Floating Point Unit based on Booth Multiplier and Compressor Adder 43. Digit-Serial Versatile Multiplier Based on a Novel Block Recombination of the Modified Overlap-Free Karatsuba Algorithm 44. Novel Bit-Parallel and Digit-Serial Systolic Finite Field Multipliers Over GF(2m) Based on Reordered Normal Basis 45. Low-Power Approximate Unsigned Multipliers With Configurable Error Recovery 46. Energy-efficient VLSI implementation of multipliers with double LSB operands 47. Design and Analysis of Approximate Redundant Binary Multipliers 48. Low-Power High-Accuracy Approximate Redundant Binary Multipliers 49. TOSAM: An Energy-Efficient Truncation- and Rounding-Based Scalable Approximate Multiplier		·
35. Design of efficient quantum Dot cellular automata (QCA) multiply accumulate (MAC) unit with power dissipation analysis 36. QCA Realization of Reversible Gates Using Layered T Logic Reduction Technique 37. QCA Based Error Detection Circuit for Nano Communication Network 38. Hamming Code Generators using LTEx Module of Quantum-dot Cellular Automata 39. A Design and Implementation of Montgomery Modular Multiplier 40. Modified Binary Multiplier Circuit Based on Vedic Mathematics 41. Performance Analysis of Wallace Tree Multiplier with Kogge Stone Adder using 15-4 Compressor 42. Implementation of Floating Point Unit based on Booth Multiplier and Compressor Adder 43. Digit-Serial Versatile Multiplier Based on a Novel Block Recombination of the Modified Overlap-Free Karatsuba Algorithm 44. Novel Bit-Parallel and Digit-Serial Systolic Finite Field Multipliers Over GF(2m) Based on Reordered Normal Basis 45. Low-Power Approximate Unsigned Multipliers With Configurable Error Recovery 46. Energy-efficient VLSI implementation of multipliers with double LSB operands 47. Design and Analysis of Approximate Redundant Binary Multipliers 48. Low-Power High-Accuracy Approximate Multiplier Using Approximate High-Order Compressors 49. TOSAM: An Energy-Efficient Truncation- and Rounding-Based Scalable Approximate Multiplier	34.	Comparative Analysis of Full Adder Custom Design Circuit using Two Regular
(MAC) unit with power dissipation analysis 36. QCA Realization of Reversible Gates Using Layered T Logic Reduction Technique 37. QCA Based Error Detection Circuit for Nano Communication Network 38. Hamming Code Generators using LTEx Module of Quantum-dot Cellular Automata 39. A Design and Implementation of Montgomery Modular Multiplier 40. Modified Binary Multiplier Circuit Based on Vedic Mathematics 41. Performance Analysis of Wallace Tree Multiplier with Kogge Stone Adder using 15-4 Compressor 42. Implementation of Floating Point Unit based on Booth Multiplier and Compressor Adder 43. Digit-Serial Versatile Multiplier Based on a Novel Block Recombination of the Modified Overlap-Free Karatsuba Algorithm 44. Novel Bit-Parallel and Digit-Serial Systolic Finite Field Multipliers Over GF(2m) Based on Reordered Normal Basis 45. Low-Power Approximate Unsigned Multipliers With Configurable Error Recovery 46. Energy-efficient VLSI implementation of multipliers with double LSB operands 47. Design and Analysis of Approximate Redundant Binary Multipliers 48. Low-Power High-Accuracy Approximate Multiplier Using Approximate High-Order Compressors 49. TOSAM: An Energy-Efficient Truncation- and Rounding-Based Scalable Approximate Multiplier		Structures in Quantum-Dot Cellular Automata (QCA)
36. QCA Realization of Reversible Gates Using Layered T Logic Reduction Technique 37. QCA Based Error Detection Circuit for Nano Communication Network 38. Hamming Code Generators using LTEx Module of Quantum-dot Cellular Automata 39. A Design and Implementation of Montgomery Modular Multiplier 40. Modified Binary Multiplier Circuit Based on Vedic Mathematics 41. Performance Analysis of Wallace Tree Multiplier with Kogge Stone Adder using 15-4 Compressor 42. Implementation of Floating Point Unit based on Booth Multiplier and Compressor Adder 43. Digit-Serial Versatile Multiplier Based on a Novel Block Recombination of the Modified Overlap-Free Karatsuba Algorithm 44. Novel Bit-Parallel and Digit-Serial Systolic Finite Field Multipliers Over GF(2m) Based on Reordered Normal Basis 45. Low-Power Approximate Unsigned Multipliers With Configurable Error Recovery 46. Energy-efficient VLSI implementation of multipliers with double LSB operands 47. Design and Analysis of Approximate Redundant Binary Multipliers 48. Low-Power High-Accuracy Approximate Multiplier Using Approximate High-Order Compressors 49. TOSAM: An Energy-Efficient Truncation- and Rounding-Based Scalable Approximate Multiplier	35.	Design of efficient quantum Dot cellular automata (QCA) multiply accumulate
Technique 37. QCA Based Error Detection Circuit for Nano Communication Network 38. Hamming Code Generators using LTEx Module of Quantum-dot Cellular Automata 39. A Design and Implementation of Montgomery Modular Multiplier 40. Modified Binary Multiplier Circuit Based on Vedic Mathematics 41. Performance Analysis of Wallace Tree Multiplier with Kogge Stone Adder using 15-4 Compressor 42. Implementation of Floating Point Unit based on Booth Multiplier and Compressor Adder 43. Digit-Serial Versatile Multiplier Based on a Novel Block Recombination of the Modified Overlap-Free Karatsuba Algorithm 44. Novel Bit-Parallel and Digit-Serial Systolic Finite Field Multipliers Over GF(2m) Based on Reordered Normal Basis 45. Low-Power Approximate Unsigned Multipliers With Configurable Error Recovery 46. Energy-efficient VLSI implementation of multipliers with double LSB operands 47. Design and Analysis of Approximate Redundant Binary Multipliers 48. Low-Power High-Accuracy Approximate Multiplier Using Approximate High-Order Compressors 49. TOSAM: An Energy-Efficient Truncation- and Rounding-Based Scalable Approximate Multiplier 50. Design Of Area Efficient And Low Power 4-Bit Multiplier Based On Full-swing		(MAC) unit with power dissipation analysis
 37. QCA Based Error Detection Circuit for Nano Communication Network 38. Hamming Code Generators using LTEx Module of Quantum-dot Cellular Automata 39. A Design and Implementation of Montgomery Modular Multiplier 40. Modified Binary Multiplier Circuit Based on Vedic Mathematics 41. Performance Analysis of Wallace Tree Multiplier with Kogge Stone Adder using 15-4 Compressor 42. Implementation of Floating Point Unit based on Booth Multiplier and Compressor Adder 43. Digit-Serial Versatile Multiplier Based on a Novel Block Recombination of the Modified Overlap-Free Karatsuba Algorithm 44. Novel Bit-Parallel and Digit-Serial Systolic Finite Field Multipliers Over GF(2m) Based on Reordered Normal Basis 45. Low-Power Approximate Unsigned Multipliers With Configurable Error Recovery 46. Energy-efficient VLSI implementation of multipliers with double LSB operands 47. Design and Analysis of Approximate Redundant Binary Multipliers 48. Low-Power High-Accuracy Approximate Multiplier Using Approximate High-Order Compressors 49. TOSAM: An Energy-Efficient Truncation- and Rounding-Based Scalable Approximate Multiplier 50. Design Of Area Efficient And Low Power 4-Bit Multiplier Based On Full-swing 	36.	QCA Realization of Reversible Gates Using Layered T Logic Reduction
38. Hamming Code Generators using LTEx Module of Quantum-dot Cellular Automata 39. A Design and Implementation of Montgomery Modular Multiplier 40. Modified Binary Multiplier Circuit Based on Vedic Mathematics 41. Performance Analysis of Wallace Tree Multiplier with Kogge Stone Adder using 15-4 Compressor 42. Implementation of Floating Point Unit based on Booth Multiplier and Compressor Adder 43. Digit-Serial Versatile Multiplier Based on a Novel Block Recombination of the Modified Overlap-Free Karatsuba Algorithm 44. Novel Bit-Parallel and Digit-Serial Systolic Finite Field Multipliers Over GF(2m) Based on Reordered Normal Basis 45. Low-Power Approximate Unsigned Multipliers With Configurable Error Recovery 46. Energy-efficient VLSI implementation of multipliers with double LSB operands 47. Design and Analysis of Approximate Redundant Binary Multipliers 48. Low-Power High-Accuracy Approximate Multiplier Using Approximate High-Order Compressors 49. TOSAM: An Energy-Efficient Truncation- and Rounding-Based Scalable Approximate Multiplier 50. Design Of Area Efficient And Low Power 4-Bit Multiplier Based On Full- swing		Technique
Automata 39. A Design and Implementation of Montgomery Modular Multiplier 40. Modified Binary Multiplier Circuit Based on Vedic Mathematics 41. Performance Analysis of Wallace Tree Multiplier with Kogge Stone Adder using 15-4 Compressor 42. Implementation of Floating Point Unit based on Booth Multiplier and Compressor Adder 43. Digit-Serial Versatile Multiplier Based on a Novel Block Recombination of the Modified Overlap-Free Karatsuba Algorithm 44. Novel Bit-Parallel and Digit-Serial Systolic Finite Field Multipliers Over GF(2m) Based on Reordered Normal Basis 45. Low-Power Approximate Unsigned Multipliers With Configurable Error Recovery 46. Energy-efficient VLSI implementation of multipliers with double LSB operands 47. Design and Analysis of Approximate Redundant Binary Multipliers 48. Low-Power High-Accuracy Approximate Multiplier Using Approximate High-Order Compressors 49. TOSAM: An Energy-Efficient Truncation- and Rounding-Based Scalable Approximate Multiplier 50. Design Of Area Efficient And Low Power 4-Bit Multiplier Based On Full- swing	37.	QCA Based Error Detection Circuit for Nano Communication Network
 39. A Design and Implementation of Montgomery Modular Multiplier 40. Modified Binary Multiplier Circuit Based on Vedic Mathematics 41. Performance Analysis of Wallace Tree Multiplier with Kogge Stone Adder using 15-4 Compressor 42. Implementation of Floating Point Unit based on Booth Multiplier and Compressor Adder 43. Digit-Serial Versatile Multiplier Based on a Novel Block Recombination of the Modified Overlap-Free Karatsuba Algorithm 44. Novel Bit-Parallel and Digit-Serial Systolic Finite Field Multipliers Over GF(2m) Based on Reordered Normal Basis 45. Low-Power Approximate Unsigned Multipliers With Configurable Error Recovery 46. Energy-efficient VLSI implementation of multipliers with double LSB operands 47. Design and Analysis of Approximate Redundant Binary Multipliers 48. Low-Power High-Accuracy Approximate Multiplier Using Approximate High-Order Compressors 49. TOSAM: An Energy-Efficient Truncation- and Rounding-Based Scalable Approximate Multiplier 50. Design Of Area Efficient And Low Power 4-Bit Multiplier Based On Full- swing 	38.	Hamming Code Generators using LTEx Module of Quantum-dot Cellular
 40. Modified Binary Multiplier Circuit Based on Vedic Mathematics 41. Performance Analysis of Wallace Tree Multiplier with Kogge Stone Adder using 15-4 Compressor 42. Implementation of Floating Point Unit based on Booth Multiplier and Compressor Adder 43. Digit-Serial Versatile Multiplier Based on a Novel Block Recombination of the Modified Overlap-Free Karatsuba Algorithm 44. Novel Bit-Parallel and Digit-Serial Systolic Finite Field Multipliers Over GF(2m) Based on Reordered Normal Basis 45. Low-Power Approximate Unsigned Multipliers With Configurable Error Recovery 46. Energy-efficient VLSI implementation of multipliers with double LSB operands 47. Design and Analysis of Approximate Redundant Binary Multipliers 48. Low-Power High-Accuracy Approximate Multiplier Using Approximate High-Order Compressors 49. TOSAM: An Energy-Efficient Truncation- and Rounding-Based Scalable Approximate Multiplier 50. Design Of Area Efficient And Low Power 4-Bit Multiplier Based On Full- swing 		
 41. Performance Analysis of Wallace Tree Multiplier with Kogge Stone Adder using 15-4 Compressor 42. Implementation of Floating Point Unit based on Booth Multiplier and Compressor Adder 43. Digit-Serial Versatile Multiplier Based on a Novel Block Recombination of the Modified Overlap-Free Karatsuba Algorithm 44. Novel Bit-Parallel and Digit-Serial Systolic Finite Field Multipliers Over GF(2m) Based on Reordered Normal Basis 45. Low-Power Approximate Unsigned Multipliers With Configurable Error Recovery 46. Energy-efficient VLSI implementation of multipliers with double LSB operands 47. Design and Analysis of Approximate Redundant Binary Multipliers 48. Low-Power High-Accuracy Approximate Multiplier Using Approximate High-Order Compressors 49. TOSAM: An Energy-Efficient Truncation- and Rounding-Based Scalable Approximate Multiplier 50. Design Of Area Efficient And Low Power 4-Bit Multiplier Based On Full-swing 		
 15-4 Compressor 42. Implementation of Floating Point Unit based on Booth Multiplier and Compressor Adder 43. Digit-Serial Versatile Multiplier Based on a Novel Block Recombination of the Modified Overlap-Free Karatsuba Algorithm 44. Novel Bit-Parallel and Digit-Serial Systolic Finite Field Multipliers Over GF(2m) Based on Reordered Normal Basis 45. Low-Power Approximate Unsigned Multipliers With Configurable Error Recovery 46. Energy-efficient VLSI implementation of multipliers with double LSB operands 47. Design and Analysis of Approximate Redundant Binary Multipliers 48. Low-Power High-Accuracy Approximate Multiplier Using Approximate High-Order Compressors 49. TOSAM: An Energy-Efficient Truncation- and Rounding-Based Scalable Approximate Multiplier 50. Design Of Area Efficient And Low Power 4-Bit Multiplier Based On Full- swing 		
 42. Implementation of Floating Point Unit based on Booth Multiplier and Compressor Adder 43. Digit-Serial Versatile Multiplier Based on a Novel Block Recombination of the Modified Overlap-Free Karatsuba Algorithm 44. Novel Bit-Parallel and Digit-Serial Systolic Finite Field Multipliers Over GF(2m) Based on Reordered Normal Basis 45. Low-Power Approximate Unsigned Multipliers With Configurable Error Recovery 46. Energy-efficient VLSI implementation of multipliers with double LSB operands 47. Design and Analysis of Approximate Redundant Binary Multipliers 48. Low-Power High-Accuracy Approximate Multiplier Using Approximate High-Order Compressors 49. TOSAM: An Energy-Efficient Truncation- and Rounding-Based Scalable Approximate Multiplier 50. Design Of Area Efficient And Low Power 4-Bit Multiplier Based On Full- swing 	41.	
Adder 43. Digit-Serial Versatile Multiplier Based on a Novel Block Recombination of the Modified Overlap-Free Karatsuba Algorithm 44. Novel Bit-Parallel and Digit-Serial Systolic Finite Field Multipliers Over GF(2m) Based on Reordered Normal Basis 45. Low-Power Approximate Unsigned Multipliers With Configurable Error Recovery 46. Energy-efficient VLSI implementation of multipliers with double LSB operands 47. Design and Analysis of Approximate Redundant Binary Multipliers 48. Low-Power High-Accuracy Approximate Multiplier Using Approximate High-Order Compressors 49. TOSAM: An Energy-Efficient Truncation- and Rounding-Based Scalable Approximate Multiplier 50. Design Of Area Efficient And Low Power 4-Bit Multiplier Based On Full-swing		
 43. Digit-Serial Versatile Multiplier Based on a Novel Block Recombination of the Modified Overlap-Free Karatsuba Algorithm 44. Novel Bit-Parallel and Digit-Serial Systolic Finite Field Multipliers Over GF(2m) Based on Reordered Normal Basis 45. Low-Power Approximate Unsigned Multipliers With Configurable Error Recovery 46. Energy-efficient VLSI implementation of multipliers with double LSB operands 47. Design and Analysis of Approximate Redundant Binary Multipliers 48. Low-Power High-Accuracy Approximate Multiplier Using Approximate High-Order Compressors 49. TOSAM: An Energy-Efficient Truncation- and Rounding-Based Scalable Approximate Multiplier 50. Design Of Area Efficient And Low Power 4-Bit Multiplier Based On Full- swing 	42.	
Modified Overlap-Free Karatsuba Algorithm 44. Novel Bit-Parallel and Digit-Serial Systolic Finite Field Multipliers Over GF(2m) Based on Reordered Normal Basis 45. Low-Power Approximate Unsigned Multipliers With Configurable Error Recovery 46. Energy-efficient VLSI implementation of multipliers with double LSB operands 47. Design and Analysis of Approximate Redundant Binary Multipliers 48. Low-Power High-Accuracy Approximate Multiplier Using Approximate High- Order Compressors 49. TOSAM: An Energy-Efficient Truncation- and Rounding-Based Scalable Approximate Multiplier 50. Design Of Area Efficient And Low Power 4-Bit Multiplier Based On Full- swing		
 44. Novel Bit-Parallel and Digit-Serial Systolic Finite Field Multipliers Over GF(2m) Based on Reordered Normal Basis 45. Low-Power Approximate Unsigned Multipliers With Configurable Error Recovery 46. Energy-efficient VLSI implementation of multipliers with double LSB operands 47. Design and Analysis of Approximate Redundant Binary Multipliers 48. Low-Power High-Accuracy Approximate Multiplier Using Approximate High-Order Compressors 49. TOSAM: An Energy-Efficient Truncation- and Rounding-Based Scalable Approximate Multiplier 50. Design Of Area Efficient And Low Power 4-Bit Multiplier Based On Full- swing 	43.	
Based on Reordered Normal Basis 45. Low-Power Approximate Unsigned Multipliers With Configurable Error Recovery 46. Energy-efficient VLSI implementation of multipliers with double LSB operands 47. Design and Analysis of Approximate Redundant Binary Multipliers 48. Low-Power High-Accuracy Approximate Multiplier Using Approximate High-Order Compressors 49. TOSAM: An Energy-Efficient Truncation- and Rounding-Based Scalable Approximate Multiplier 50. Design Of Area Efficient And Low Power 4-Bit Multiplier Based On Full- swing		
45. Low-Power Approximate Unsigned Multipliers With Configurable Error Recovery 46. Energy-efficient VLSI implementation of multipliers with double LSB operands 47. Design and Analysis of Approximate Redundant Binary Multipliers 48. Low-Power High-Accuracy Approximate Multiplier Using Approximate High-Order Compressors 49. TOSAM: An Energy-Efficient Truncation- and Rounding-Based Scalable Approximate Multiplier 50. Design Of Area Efficient And Low Power 4-Bit Multiplier Based On Full- swing	44.	
Recovery 46. Energy-efficient VLSI implementation of multipliers with double LSB operands 47. Design and Analysis of Approximate Redundant Binary Multipliers 48. Low-Power High-Accuracy Approximate Multiplier Using Approximate High-Order Compressors 49. TOSAM: An Energy-Efficient Truncation- and Rounding-Based Scalable Approximate Multiplier 50. Design Of Area Efficient And Low Power 4-Bit Multiplier Based On Full- swing	1.5	
 46. Energy-efficient VLSI implementation of multipliers with double LSB operands 47. Design and Analysis of Approximate Redundant Binary Multipliers 48. Low-Power High-Accuracy Approximate Multiplier Using Approximate High-Order Compressors 49. TOSAM: An Energy-Efficient Truncation- and Rounding-Based Scalable Approximate Multiplier 50. Design Of Area Efficient And Low Power 4-Bit Multiplier Based On Full- swing 	45.	
 47. Design and Analysis of Approximate Redundant Binary Multipliers 48. Low-Power High-Accuracy Approximate Multiplier Using Approximate High-Order Compressors 49. TOSAM: An Energy-Efficient Truncation- and Rounding-Based Scalable Approximate Multiplier 50. Design Of Area Efficient And Low Power 4-Bit Multiplier Based On Full- swing 	4.5	
 48. Low-Power High-Accuracy Approximate Multiplier Using Approximate High-Order Compressors 49. TOSAM: An Energy-Efficient Truncation- and Rounding-Based Scalable Approximate Multiplier 50. Design Of Area Efficient And Low Power 4-Bit Multiplier Based On Full- swing 		
Order Compressors 49. TOSAM: An Energy-Efficient Truncation- and Rounding-Based Scalable Approximate Multiplier 50. Design Of Area Efficient And Low Power 4-Bit Multiplier Based On Full-swing		
 49. TOSAM: An Energy-Efficient Truncation- and Rounding-Based Scalable Approximate Multiplier 50. Design Of Area Efficient And Low Power 4-Bit Multiplier Based On Full- swing 	48.	
Approximate Multiplier 50. Design Of Area Efficient And Low Power 4-Bit Multiplier Based On Full-swing	40	
50. Design Of Area Efficient And Low Power 4-Bit Multiplier Based On Full-swing	49.	
	50	**
GDI tecnnique	50.	,
		GDI technique

51.	Low Space Complexity GF(2m) Multiplier for Trinomials Using n -Term
	Karatsuba Algorithm
52.	Rounding Technique Analysis for Power-Area & Energy Efficient Approximate
	Multiplier Design
53.	Design and Analysis of High Performance Multiplier Circuit
54.	Comparative Performance Analysis of Karatsuba Vedic Multiplier with Butterfly
	Unit
55.	A Low Power Binary Square rooter using Reversible Logic
56.	LDPC check node implementation using reversible logic
57.	Area Efficient VLSI Architecture for Reversible Radix-2 FFT Algorithm using
	Folding Technique and Reversible Gate
58.	Efficient designs of reversible latches with low quantum cost
59.	Structured decomposition for reversible Boolean functions
60.	Design and synthesis of improved reversible circuits using AIG- and MIG-based
	graph data structures
61.	Design of Reversible Arithmetic Logic Unit with Built-In Testability
62.	Embedding Functions Into Reversible Circuits: A Probabilistic Approach to the
	Number of Lines
63.	Chaos-Based Bitwise Dynamical Pseudorandom Number Generator On FPGA
64.	A High Performance Full-Word Barrett Multiplier Designed for FPGAs with DSP
	Resources CF1 1 G 1 H G 1
65.	Design and Execution of Enhanced Carry Increment Adder using Han-Carlson
	and Kogge-Stone adder Technique: Han-Carlson and Kogge-Stone adder is used
66	to increase speed of adder circuitry
66.	Design and Performance Comparison among Various types of Adder Topologies A New High gread and Low one Efficient Binding 128 bit Adder Based on
67.	A New High-speed and Low area Efficient Pipelined 128-bit Adder Based on Modified Carry Look-ahead Merging with Han-Carlson Tree Method
68.	16 Bit Power Efficient Carry Select Adder
69.	Implementation of an XOR Based 16-bit Carry Select Adder for Area, Delay and
0).	Power Minimization
70.	Carry based approximate full adder for low power approximate computing
71.	Analysis of 1- bit full adder using different techniques in Cadence 45nm
, = ,	Technology
72.	Area Efficient Architecture for high speed wide data adders in Xilinx FPGAs
73.	Design of Delay Efficient Hybrid Adder for High Speed Applications
74.	Power-Delay-Product, Area and Threshold-Loss Analysis of CMOS Full Adder
	Circuits
75.	Design and Performance Analysis of 32 Bit VLSI Hybrid adder
76.	Static Delay Variation Models for Ripple-Carry and Borrow-Save Adders
77.	SEDA - Single Exact Dual Approximate Adders for Approximate Processors
78.	A Novel Framework for Procedural Construction of Parallel Prefix Adders
79.	Design of Swing Dependent XOR-XNOR Gates based Hybrid Full Adder
80.	Formal Probabilistic Analysis of Low Latency Approximate Adders
81.	High Precision, High Performance FPGA Adders
82.	Concurrent Error Detectable Carry Select Adder with Easy Testability
83.	Design Methodology to Explore Hybrid Approximate Adders for Energy-
	Efficient Image and Video Processing Accelerators
84.	Design Of 3 Bit Adder Using 6 Transistors In Mentor Graphics

85.	A Theoretical Framework for Quality Estimation and Optimization of DSP
	Applications Using Low-Power Approximate Adders
86.	Hybrid Logical Effort for Hybrid Logic Style Full Adders in Multistage Structures
87.	Power-Efficient Approximate SAD Architecture with LOA Imprecise Adders
88.	Efficient Modular Adder Designs Based on Thermometer and One-Hot Coding
89.	Design of a Scalable Low-Power 1-bit Hybrid Full Adder for Fast Computation
90.	Block-based Carry Speculative Approximate Adder for Energy-Efficient
	Applications
91.	FPGA Based Performance Comparison of Different Basic Adder Topologies with
	Parallel Processing Adder
92.	A novel design gate based low cost configurable R0 puf using reversible logic
	gates